Daniel Kroening
Ofer Strichman

|1 1l (N | IR | S | Ll IR |
| [11 I 11 [1 I A I I B O 1111111 TS SIS
I I O 1L LI 1T [Tl R] LI
[] |l T e O O R R SIS SRR [(][] [0

Decision
Procedures

An Algorithmic Point of View

@ Springer

Texts in Theoretical Computer Science
An EATCS Series

Editors: W. Brauer J. Hromkovi¢ G. Rozenberg A. Salomaa

On behalf of the European Association
for Theoretical Computer Science (EATCS)

Advisory Board:

G. Ausiello M. Broy C.S. Calude A.Condon
D. Harel J. Hartmanis T. Henzinger T. Leighton
M. Nivat C. Papadimitriou D. Scott

Daniel Kroening - Ofer Strichman

Decision Procedures

An Algorithmic Point of View

Foreword by Randal E. Bryant

@ Springer

Daniel Kroening Ofer Strichman

Computing Laboratory William Davidson Faculty of Industrial
University of Oxford Engineering and Management

Wolfson Building Technion — Israel Institute of Technology
Parks Road Technion City

Oxford, OX1 3QD Haifa 32000

United Kingdom Israel

daniel.kroening @comlab.ox.ac.uk ofers@ie.technion.ac.il

ISBN 978-3-540-74104-6 e-ISBN 978-3-540-74105-3

Texts in Theoretical Computer Science. An EATCS Series. ISSN 1862-4499

Library of Congress Control Number: 2008924795

ACM Computing Classification (1998): B.5.2, D.2.4,D.2.5, E.1, FE3.1, F4.1

(© 2008 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Cover Design: KiinkelLopka GmbH, Heidelberg

Printed on acid-free paper

987654321

springer.com

Foreword

By Randal E. Bryant

Research in decision procedures started several decades ago, but both their
practical importance and the underlying technology have progressed rapidly
in the last five years. Back in the 1970s, there was a flurry of activity in this
area, mostly centered at Stanford and the Stanford Research Institute (SRI),
motivated by a desire to apply formal logic to problems in artificial intelligence
and software verification. This work laid foundations that are still in use today.
Activity dropped off through the 1980s and 90s, accompanied by a general
pessimism about automated formal methods. A conventional wisdom arose
that computer systems, especially software, were far too complex to reason
about formally.

One notable exception to this conventional wisdom was the success of
applying Boolean methods to hardware verification, beginning in the early
1990s. Tools such as model checkers demonstrated that useful properties could
be proven about industrial scale hardware systems, and that bugs could be
detected that had otherwise escaped extensive simulation. These approaches
improved on their predecessors by employing more efficient logical reasoning
methods, namely ordered binary decision diagrams and Boolean satisfiability
solvers. The importance of considering algorithmic efficiency, and even low-
level concerns such as cache performance became widely recognized as having
a major impact on the size of problems that could be handled.

Representing systems at a detailed Boolean level limited the applicability
of early model checkers to control-intensive hardware systems. Trying to model
data operations, as well as the data and control structures found in software
leads to far too many states, when every bit of a state is viewed as a separate
Boolean signal.

One way to raise the level of abstraction for verifying a system is to view
data in more abstract terms. Rather than viewing a computer word as a
collection of 32 Boolean values, it can be represented as an integer. Rather
than viewing a floating point multiplier as a complex collection of Boolean
functions, many verification tasks can simply view it as an “uninterpreted

VI Foreword

function” computing some repeatable function over its inputs. From this ap-
proach came a renewed interest in decision procedures, automating the process
of reasoning about different mathematical forms. Some of this work revived
methods dating back many years, but alternative approaches also arose that
made use of Boolean methods, exploiting the greatly improved performance of
Boolean satisfiability (SAT) solvers. Most recently, decision procedures have
become quite sophisticated, using the general framework of search-based SAT
solvers, integrated with methods for handling the individual mathematical
theories.

With the combination of algorithmic improvements and the improved per-
formance of computer systems, modern decision procedures can readily handle
problems that far exceed the capacity of their forebearers from the 1970s. This
progress has made it possible to apply formal reasoning to both hardware and
software in ways that disprove the earlier conventional wisdom. In addition,
the many forms of malicious attacks on computer systems have created a pro-
gram execution environment where seemingly minor bugs can yield serious
vulnerabilities, and this has greatly increased the motivation to apply formal
methods to software analysis.

Until now, learning the state of the art in decision procedures required
assimilating a vast amount of literature, spread across journals and confer-
ences in a variety of different disciplines and over multiple decades. Ideas are
scattered throughout these publications, but with no standard terminology or
notation. In addition some approaches have been shown to be unsound, and
many have proven ineffective. I am therefore pleased that Daniel Kroening
and Ofer Strichman have compiled the vast amount of information on deci-
sion procedures into a single volume. Enough progress has been made in the
field that the results will be of interest to those wishing to apply decision
procedures. At the same time, this is a fast moving and active research com-
munity, making the work essential reading for the many researchers in the
field.

Preface

A decision procedure is an algorithm that, given a decision problem, termi-
nates with a correct yes/no answer. In this book, we concentrate on decision
procedures for decidable first-order theories that are useful in the context of
automated verification and reasoning, theorem proving, compiler optimiza-
tion, synthesis, and so forth. Since the ability of these techniques to cope with
problems arising in industry depends critically on decision procedures, this
is a vibrant and prospering research subject for many researchers around the
world, both in academia and in industry. Intel and AMD, for example, are
developing and using theorem provers and decision procedures as part of their
efforts to build circuit verification tools with ever-growing capacity. Microsoft
is developing and routinely using decision procedures in several code analysis
tools.

Despite the importance of decision procedures, one rarely finds a university
course dedicated entirely to this topic; occasionally, it is addressed in courses
on algorithms or on logic for computer science. One of the reasons for this
situation, we believe, is the lack of a textbook summarizing the main results
in the field in an accessible, uniform way. The primary goal of this book is
therefore to serve as a textbook for an advanced undergraduate- or graduate-
level computer science course. It does not assume specific prior knowledge
beyond what is expected from a third-year undergraduate computer science
student. The book may also help graduate students entering the field, as
currently they are required to gather information from what seems to be an
endless list of articles.

The decision procedures that we describe in this book draw from diverse
fields such as graph theory, logic, and operations research. These procedures
have to be highly efficient, since the problems they solve are inherently hard.
They never seem to be efficient enough, however: what we want to be able to
prove is always harder than what we can prove. Their asymptotic complexity
and their performance in practice must always be pushed further. These char-
acteristics are what makes this topic so compelling for research and teaching.

VIII Preface

j i a
&
8

7 . M

N\

YA

Fig. 1. Decision procedures can be rather complex ... those that we consider in
this book take formulas of different theories as input, possibly mix them (using
the Nelson—Oppen procedure — see Chap. 10), decide their satisfiability (“YES” or
“NO”), and, if yes, provide a satisfying assignment

Which Theories? Which Algorithms?

A first-order theory can be considered “interesting”, at least from a practical
perspective, if it fulfills at least these two conditions:

1. The theory is expressive enough to model a real decision problem. More-
over, it is more expressive or more natural for the purpose of expressing
some models in comparison with theories that are easier to decide.

Preface IX

2. The theory is either decidable or semidecidable, and more efficiently solv-
able than theories that are more expressive, at least in practice if not in
theory.!

All the theories described in this book fulfill these two conditions. Further-
more, they are all used in practice. We illustrate applications of each theory
with examples representative of real problems, whether they may be verifica-
tion of C programs, verification of hardware circuits, or optimizing compilers.
Background in any of these problem domains is not assumed, however.

Other than in one chapter, all the theories considered are quantifier-free.
The problem of deciding them is NP-complete. In this respect, they can all be
seen as “front ends” of any one of them, for example propositional logic. They
differ from each other mainly in how naturally they can be used for modeling
various decision problems. For example, consider the theory of equality, which
we describe in Chaps. 3 and 4: this theory can express any Boolean combina-
tion of Boolean variables and expressions of the form x; = x5, where z; and
x9 are variables ranging over, for example, the natural numbers. The problem
of satisfying an expression in this theory can be reduced to a satisfiability
problem of a propositional logic formula (and vice versa). Hence, there is no
difference between propositional logic and the theory of equality in terms of
their ability to model decision problems. However, many problems are more
naturally modeled with the equality operator and non-Boolean variables.

For each theory that is discussed, there are many alternative decision pro-
cedures in the literature. Effort was made to select those procedures that are
known to be relatively efficient in practice, and at the same time are based on
what we believe to be an interesting idea. In this respect, we cannot claim to
have escaped the natural bias that one has towards one’s own line of research.

Every year, new decision procedures and tools are being published, and
it is impossible to write a book that reports on this moving target of “the
most efficient” decision procedures (the worst-case complexity of most of the
competing procedures is the same). Moreover, many of them have never been
thoroughly tested against one another. We refer readers who are interested in
the latest developments in this field to the SMT-LIB Web page, as well as to
the results of the annual tool competition SMT-COMP (see Appendix A). The
SMT-COMP competitions are probably the best way to stay up to date as to
the relative efficiency of the various procedures and the tools that implement
them. One should not forget, however, that it takes much more than a good
algorithm to be efficient in practice.

The Structure and Nature of This Book

The first chapter is dedicated to basic concepts that should be familiar to
third- or fourth-year computer science students, such as formal proofs, the

! Terms such as expressive and decidable have precise meanings, and are defined in
the first chapter.

X Preface

satisfiability problem, soundness and completeness, and the trade-off between
expressiveness and decidability. It also includes the theoretical basis for the
rest of the book. From Sect. 1.5 onwards, the chapter is dedicated to more
advanced issues that are necessary as a general introduction to the book, and
are therefore recommended even for advanced readers. Each of the 10 chapters
that follow is mostly self-contained, and generally does not rely on references
to other chapters, other than the first introductory chapter. An exception
to this rule is Chap. 4, which relies on definitions and explanations given in
Chap. 3.

The mathematical symbols and notations are mostly local to each chapter.
Each time a new symbol is introduced, it appears in a rounded box in the
margin of the page for easy reference. All chapters conclude with problems,
varying in level of difficulty, and bibliographic notes and a glossary of symbols.

A draft of this book was used as lecture notes for a combined undergradu-
ate and graduate course on decision procedures at the Technion, Israel, at ETH
Zurich, Switzerland, and at Oxford University, UK. The slides that were used
in these courses, as well as links to other resources appear on the book’s Web
page (www.decision-procedures.org). Source code of a C++ library
for rapid development of decision procedures can also be downloaded from
this page. This library provides the necessary infrastructure for programming
many of the algorithms described in this book, as explained in Appendix B.
Implementing one of these algorithms was a requirement in the course, and it
proved successful. It even led several students to their thesis topic.

Acknowledgments

Many people read drafts of this manuscript and gave us useful advice. We
would like to thank, in alphabetical order, Domagoj Babic, Josh Berdine, Hana
Chockler, Leonardo de Moura, Benny Godlin, Alan Hu, Wolfgang Kunz, Shu-
vendu Lahiri, Albert Oliveras Llunell, Joel Ouaknine, Hendrik Post, Sharon
Shoham, Aaron Stump, Cesare Tinelli, Ashish Tiwari, Rachel Tzoref, Helmut
Veith, Georg Weissenbacher, and Calogero Zarba. We thank Ilya Yodovsky
Jr. for the drawing in Fig. 1.

February 2008

Daniel Kroening Ofer Strichman
Oxford University, United Kingdom Technion, Haifa, Israel

Contents

1 Introduction and Basic Concepts 1
1.1 Two Approaches to Formal Reasoning. 3
1.1.1 Proof by Deduction......... 3
1.1.2 Proof by Enumeration 4

1.1.3 Deduction and Enumeration 5

1.2 Basic Definitions i 5
1.3 Normal Forms and Some of Their Properties 8
1.4 The Theoretical Point of View 14
1.4.1 The Problem We Solve 17
1.4.2 Our Presentation of Theories 17

1.5 Expressiveness vs. Decidability 18
1.6 Boolean Structure in Decision Problems 19
1.7 Problems 21
1.8 GloSSary ..ot 23
2 Decision Procedures for Propositional Logic 25
2.1 Propositional Logic 25
2.1.1 Motivation 25

2.2 SAT SOIVEIS ..o 27
2.2.1 The Progress of SAT Solving. 27
2.2.2 The DPLL Framework 28
2.2.3 BCP and the Implication Graph 30
2.2.4 Conflict Clauses and Resolution 35
2.2.5 Decision Heuristics 39
2.2.6 The Resolution Graph and the Unsatisfiable Core 41
2.2.7 SAT Solvers: SUMmMAarycouuueeunneenn... 42

2.3 Binary Decision Diagrams 43
2.3.1 From Binary Decision Trees to ROBDDs 43
2.3.2 Building BDDs from Formulas 46

2.4 Problems 50

2.4.1 Warm-up Exercises i 50

XII Contents
242 Modeling 50
2.4.3 Complexityoooui 51
2.4.4 DPLL SAT Solvingt 52
2.4.5 Related Problems 52
2.4.6 Binary Decision Diagrams 53

2.5 Bibliographic Noteso i 54
2.6 GlOSSATY « .ottt 57
3 Equality Logic and Uninterpreted Functions 59
3.1 Introduction 59
3.1.1 Complexity and Expressiveness 59
3.1.2 Boolean Variables 60
3.1.3 Removing the Constants: A Simplification 60
3.2 Uninterpreted Functions........ 60
3.2.1 How Uninterpreted Functions Are Used 61
3.2.2 An Example: Proving Equivalence of Programs........ 63
3.3 From Uninterpreted Functions to Equality Logic 64
3.3.1 Ackermann’s Reduction 66
3.3.2 Bryant’s Reduction o 69
3.4 Functional Consistency Is Not Enough 72
3.5 Two Examples of the Use of Uninterpreted Functions 74
3.5.1 Proving Equivalence of Circuits 75
3.5.2 Verifying a Compilation Process with Translation
Validation i 7
3.6 Problems 78
3.6.1 Warm-up Exercises i 78
3.6.2 Problems......... 78
3.7 GlOSSATY .« .ot 79
4 Decision Procedures for Equality Logic and Uninterpreted
Functions 81
4.1 Congruence Closure.oiiiiiiiiiiiin. . 81
4.2 Basic Conceptst 83
4.3 Simplifications of the Formula.............. 85
4.4 A Graph-Based Reduction to Propositional Logic............ 88
4.5 Equalities and Small-Domain Instantiations................. 92
4.5.1 Some Simple Bounds 93
4.5.2 Graph-Based Domain Allocation 94
4.5.3 The Domain Allocation Algorithm................... 96
4.5.4 A Proof of Soundness i 98
455 SUMIMNATY . . ot v ettt e e e et 101
4.6 Ackermann’s vs. Bryant’s Reduction: Where Does It Matter? . 101
4.7 Problems 103

4.7.1 Conjunctions of Equalities and Uninterpreted Functions 103
4.7.2 Reductions i 104

Contents XIIT
4.7.3 Complexityot 105
4.7.4 Domain Allocation 106

4.8 Bibliographic Notes........ i i 106
4.9 GlOSSATY .ottt 108
5 Linear Arithmetic L 111
5.1 Introduction 111
5.1.1 Solvers for Linear Arithmetic 112

5.2 The Simplex Algorithm 113
5.2.1 Decision Problems and Linear Programs.............. 113
5.2.2 Basics of the Simplex Algorithm..................... 114
5.2.3 Simplex with Upper and Lower Bounds 116
5.2.4 Incremental Problems............ 120

5.3 The Branch and Bound Method 120
5.3.1 Cutting-Planes i 122

5.4 Fourier—-Motzkin Variable Elimination...................... 126
5.4.1 Equality Constraints........... 126
5.4.2 Variable Elimination 126
5.4.3 Complexityooii 129

5.5 The Omega Test it 129
5.5.1 Problem Description 129
5.5.2 Equality Constraints 130
5.5.3 Inequality Constraints 132

5.6 Preprocessing 138
5.6.1 Preprocessing of Linear Systems..................... 138
5.6.2 Preprocessing of Integer Linear Systems 139

5.7 Difference Logic 140
5.7.1 Introduction i 140
5.7.2 A Decision Procedure for Difference Logic 142

5.8 Problems 142
5.8.1 Warm-up Exercises 142
5.8.2 The Simplex Method 143
5.8.3 Integer Linear Systems............ 143
5.84 Omega Test ... i 144
5.8.5 Difference Logico 145

5.9 Bibliographic Notes.......... i i 145
5.10 GLOSSATY « v vttt e e 146
6 Bit Vectors 149
6.1 Bit-Vector Arithmetic...... i 149
6.1.1 Synmbaxt 149
6.1.2 Notation 151
6.1.3 Semanticsi i 152

6.2 Deciding Bit-Vector Arithmetic with Flattening 156

6.2.1 Converting the Skeleton 156

X1V Contents
6.2.2 Arithmetic Operators 157

6.3 Incremental Bit Flattening 160
6.3.1 Some Operators Are Hard 160
6.3.2 Enforcing Functional Consistency 162

6.4 Using Solvers for Linear Arithmetic.............. 163
6.4.1 Motivation 163
6.4.2 Integer Linear Arithmetic for Bit Vectors............. 163

6.5 Fixed-Point Arithmetic............ 165
6.5.1 Semanticsi . 165
6.5.2 Flattening 167

6.6 Problems 167
6.6.1 SemantiCsiiiiii 167
6.6.2 Bit-Level Encodings of Bit-Vector Arithmetic 168
6.6.3 Using Solvers for Linear Arithmetic.................. 169

6.7 Bibliographic Notes.......... i i 169
6.8 GlOSSATY « .ottt 170
T ATTAYS . oo 171
7.1 Introduction 171
7.2 Arrays as Uninterpreted Functions......................... 172
7.3 A Reduction Algorithm for Array Logic 175
7.3.1 Array Properties 175
7.3.2 A Reduction Algorithm 176

T4 Problems 178
7.5 Bibliographic Notes........ i i 178
7.6 GlOSSATY oot 179
8 Pointer Logic 181
8.1 Imtroduction 181
8.1.1 Pointers and Their Applications 181
8.1.2 Dynamic Memory Allocation........................ 182
8.1.3 Analysis of Programs with Pointers 184

8.2 A Simple Pointer Logic........ i 185
8.2.1 Symbax . ..o 185
8.2.2 SemantiCsiii 187
8.2.3 Axiomatization of the Memory Model 188
8.2.4 Adding Structure Types...........coiiiiii. . 189

8.3 Modeling Heap-Allocated Data Structures 190
8.3.1 LSS .ot 190
8.3.2 Trees ..o 191

8.4 A Decision Procedure 193
8.4.1 Applying the Semantic Translation 193
8.4.2 Pure Variables i 195
8.4.3 Partitioning the Memory 196

8.5 Rule-Based Decision Procedures 197

Contents XV

10

11

8.5.1 A Reachability Predicate for Linked Structures........ 198
8.5.2 Deciding Reachability Predicate Formulas 199
8.6 Problems 202
8.6.1 Pointer Formulas oL 202
8.6.2 Reachability Predicates 203
8.7 Bibliographic Notes i i 204
8.8 GlOSSATY .« .ottt 206
Quantified Formulas i 207
9.1 Introduction 207
9.1.1 Example: Quantified Boolean Formulas............... 209
9.1.2 Example: Quantified Disjunctive Linear Arithmetic211
9.2 Quantifier Elimination 211
9.2.1 Prenex Normal Form 211
9.2.2 Quantifier Elimination Algorithms................... 213

9.2.3 Quantifier Elimination for Quantified Boolean Formulas 214
9.2.4 Quantifier Elimination for Quantified Disjunctive

Linear Arithmetic 217

9.3 Search-Based Algorithms for QBF 218
9.4 Problems 220
9.4.1 Warm-up Exercises i 220
9.4.2 QBF 220

9.5 Bibliographic Notes 223
9.6 GlOSSAIY . ottt 224
Deciding a Combination of Theories 225
10.1 Introductionttt 225
10.2 Preliminaries. 225
10.3 The Nelson—Oppen Combination Procedure................. 227
10.3.1 Combining Convex Theories 227
10.3.2 Combining Nonconvex Theories 230
10.3.3 Proof of Correctness of the Nelson-Oppen Procedure .. 233

10.4 Problems 236
10.5 Bibliographic Notes i i 236
10.6 GlOSSATY . oot 239
Propositional Encodings 241
111 OVEIVIEW . oottt et e e e 241
11.2 Lazy Encodings 244
11.2.1 Definitions and Notations 244
11.2.2 Building Propositional Encodings.................... 245
11.2.3 Integration into DPLL 246
11.2.4 Theory Propagation and the DPLL(T") Framework 246
11.2.5 Some Implementation Details of DPLL(T) 250

11.3 Propositional Encodings with Proofs (Advanced) 253

XVI Contents
11.3.1 Encoding Proofs i .. 254

11.3.2 Complete Proofs 255

11.3.3 Eager Encodings i 257

11.3.4 Criteria for Complete Proofs........................ 258

11.3.5 Algorithms for Generating Complete Proofs 259

11.4 Problemso 263
11.5 Bibliographic Notes i 264
11.6 GlOSSary ..ot 267

A The SMT-LIB Initiative 269
B A C++ Library for Developing Decision Procedures. 271
B.1 Introduction 271

B.2 Graphs and Trees 272
B.2.1 Adding “Payload” i 274

B.3 Parsing 274
B.3.1 A Grammar for First-Order Logic 274

B.3.2 The Problem File Format 276

B.3.3 A Class for Storing Identifiers....................... 277

B.3.4 The Parse Tree.o 277

B.4 CONF and SAT 278
B.4.1 Generating CNF 278

B.4.2 Converting the Propositional Skeleton................ 281

B.5 A Template for a Lazy Decision Procedure.................. 281
References. 285

1

Introduction and Basic Concepts

While the focus of this book is on algorithms rather than mathematical logic,
the two points of view are inevitably mixed: one cannot truly understand
why a given algorithm is correct without understanding the logic behind it.
This does not mean, however, that logic is a prerequisite, or that without
understanding the fundamentals of logic, it is hard to learn and use these
algorithms. It is similar, perhaps, to a motorcyclist who has the choice of
whether to learn how his or her bike works.

He or she can ride a long way without such knowledge, but at certain
points, when things go wrong or if the bike has to be tuned for a particular
ride, understanding how and why things work comes in handy. And then
again, suppose our motorcyclist does decide to learn mechanics: where should
he or she stop? Is the physics of combustion engines important? Is the “why”
important at all, or just the “how”? Or an even more fundamental question:
should one first learn how to ride a motorcycle and then refer to the basics
when necessary, or learn things “bottom-up”, from principles to mechanics —
from science to engineering — and then to the rules of driving?

The reality is that different people have different needs, tendencies, and
backgrounds, and there is no right way to write a motorcyclist’s manual that
fits all. And things can get messier when one is trying to write a book about
decision procedures which is targeted, on one hand, at practitioners — pro-
grammers who need to know about algorithms that solve their particular
problems — and, on the other hand, at students and researchers who need to
see how these algorithms can be defined in the theoretical framework that
they are accustomed to, namely logic.

This first chapter has been written with both types of reader in mind. It
is a combination of a reference for later chapters and a general introduction.
Section 1.1 describes the two most common approaches to formal reasoning,
namely deduction and enumeration, and demonstrates them with proposi-
tional logic. Section 1.2 serves as a reference for basic terminology such as
validity, satisfiability, soundness and completeness. More basic terminology is
described in Sect. 1.3, which is dedicated to normal forms and some of their

2 1 Introduction and Basic Concepts

properties. Up to that point in the chapter, there is no new material. As of
Sect. 1.5, the chapter is dedicated to more advanced issues that are necessary
as a general introduction to the book. Section 1.4 positions the subject which
this book is dedicated to in the theoretical framework in which it is typically
discussed in the literature. This is important mainly for the second type of
reader: those who are interested in entering this field as researchers, and, more
generally, those who are trained to some extent in mathematical logic. This
section also includes a description of the types of problem that we are con-
cerned with in this book, and the standard form in which they are presented
in the following chapters. Section 1.5 describes the trade-off between expres-
siveness and decidability. In Sect. 1.6, we conclude the chapter by discussing
the need for reasoning about formulas with a Boolean structure.

What about the rest of the book? Each chapter is dedicated to a different
first-order theory. We have not yet explained what a theory is, and specifi-
cally what a first-order theory is — this is the role of Sect. 1.4 — but some
examples are still in order, as some intuition as to what theories are is required
before we reach that section in order to understand the direction in which we
are proceeding.

Informally, one may think of a theory as a finite or an infinite set of formu-
las, which are characterized by common grammatical rules, allowed functions
and predicates, and a domain of values. The fact that they are called “first-
order” means only that there is a restriction on the quantifiers (only variables,
rather than sets of variables, can be quantified), but this is mostly irrelevant
to us, because, in all chapters but one, we restrict the discussion to quantifier-
free formulas. The table below lists some of the first-order theories that are
covered in this book.!

Theory name Example formula Chapter
Propositional logic ~ x1 A (z2 V —x3) 2
Equality i =y2 Ay =ys3) = ~(y1 = ys) 3,4
Linear arithmetic (221 4+ 322 < 5) V (22 + 522 — 1023 > 6) 5

Bit vectors ((a>b) & c)<c 6
Arrays (i=jANalj]=1) = afi] =1 7
Pointer logic p=qA*xp=5 — xq=25 8

—_
=]

Combined theories (i < jAalj]=1) = ali] <2

In the next few sections, we use propositional logic, which we assume the
reader is familiar with, in order to demonstrate various concepts that apply
equally to other first-order theories.

! Here we consider propositional logic as a first-order theory, which is technically
correct, although not common.

1.1 Two Approaches to Formal Reasoning 3

1.1 Two Approaches to Formal Reasoning

The primary problem that we are concerned with is that of the validity (or
satisfiability) of a given formula. Two fundamental strategies for solving this
problem are the following:

e The model-theoretic approach is to enumerate possible solutions from
a finite number of candidates.

e The proof-theoretic approach is to use a deductive mechanism of rea-
soning, based on axioms and inference rules, which together are called
an inference system.

These two directions — enumeration and deduction — are apparent as early
as the first lessons on propositional logic. We dedicate this section to demon-
strating them.

Consider the following three contradicting claims:

1. If 2 is a prime number greater than 2, then x is odd.
2. It is not the case that x is not a prime number greater than 2.
3. x is not odd.

Denote the statement “z is a prime number greater than 2” by A and the
statement “x is odd” by B. These claims translate into the following propo-

sitional formulas:
A — B.

A (1.1)
-B.

We would now like to prove that this set of formulas is indeed inconsistent.

1.1.1 Proof by Deduction

The first approach is to derive conclusions by using an inference system. In-
ference rules relate antecedents to their consequents. For example, the
following are two inference rules, called modus ponens (M.P.) and CONTRA-
DICTION:

LT 2 9L\, (1.2)
P2

L (CONTRADICTION) . (1.3)

FALSE

The rule M.P. can be read as follows: from ¢; = - and ¢; being TRUE,
deduce that ¢s is TRUE. The formula - is the consequent of the rule M.P.
Axioms are inference rules without antecedents:

———— (DOUBLE-NEGATION-AX) . (1.4)
] <)

(Axioms are typically written without the separating line above them.) We
can also write a similar inference rule:

4 1 Introduction and Basic Concepts

e (DOUBLE-NEGATION) . (1.5)

(DOUBLE-NEGATION-AX and DOUBLE-NEGATION are not the same, because
the latter is not symmetric.) Many times, however, axioms and inference rules
are interchangeable, so there is not always a sharp distinction between them.

The inference rules and axioms above are expressed with the help of ar-
bitrary formula symbols (such as ¢1 and ¢5 in (1.2)). In order to use them
for proving a particular theorem, they need to be instantiated, which means
that these arbitrary symbols are replaced with specific variables and formulas
that are relevant to the theorem that we wish to prove. For example, the in-
ference rules (1.2), (1.3), and (1.5) can be instantiated such that FALSE, i.e.,
a contradiction, can be derived from the set of formulas in (1.1):

(1) A = B (premise)

(2) ——A (premise)

(3) A (2; DOUBLE-NEGATION) (1.6)
(4) =B (premise) ’
(5) B (1,3; M.P.)

(6) FALSE (4,5; CONTRADICTION) .

Here, in step (3), ¢ in the rule DOUBLE-NEGATION is instantiated with A. The
antecedent 7 in the rule M.P. is instantiated with A, and ¢5 is instantiated
with B.

More complicated theorems may require more complicated inference sys-
tems. This raises the question of whether everything that can be proven with a
given inference system is indeed valid (in this case the system is called sound),
and whether there exists a proof of validity using the inference system for ev-
ery valid formula (in this case it is called complete). These questions are
fundamental for every deduction system; we delay further discussion of this
subject and a more precise definition of these terms to Sect. 1.2.

While deductive methods are very general, they are not always the most
convenient or the most efficient way to know whether a given formula is valid.

1.1.2 Proof by Enumeration

The second approach is relevant if the problem of checking whether a for-
mula is satisfiable can be reduced to a problem of searching for a satisfying
assignment within a finite set of options. This is the case, for example, if the
variables range over a finite domain,? such as in propositional logic. In the
case of propositional logic, enumerating solutions can be done using truth
tables, as demonstrated by the following example:

2 A finite domain is a sufficient but not a necessary condition. In many cases, even
if the domain is infinite, it is possible to find a bound such that if there exists
a satisfying assignment, then there exists one within this bound. Theories that
have this property are said to have the small-model property.

1.2 Basic Definitions 5

A‘ A:>B‘A:>B A‘(A:>B)/\AAﬁB

11 1 0
110 O 0 0
0]1 1 0 0
0|0 1 0 0

The rightmost column, which represents the formula in our example (see (1.1)),
is not satisfied by any one of the four possible assignments, as expected.

1.1.3 Deduction and Enumeration

The two basic approaches demonstrated above, deduction and enumeration,
go a long way, and in fact are major subjects in the study of logic. In practice,
many decision procedures are not based on explicit use of either enumeration
or deduction. Yet, typically their actions can be understood as performing one
or the other (or both) implicitly, which is particularly helpful when arguing
for their correctness.

1.2 Basic Definitions

We begin with several basic definitions that are used throughout the book.
Some of the definitions that follow do not fully coincide with those that are
common in the study of mathematical logic. The reason for these gaps is
that we focus on quantifier-free formulas, which enables us to simplify various
definitions. We discuss these issues further in Sect. 1.4.

Definition 1.1 (assignment). Given a formula ¢, an assignment of ¢ from
a domain D is a function mapping ¢’s variables to elements of D. An assign-
ment to o is full if all of v’s variables are assigned, and partial otherwise.

In this definition, we assume that there is a single domain for all variables.
The definition can be trivially extended to the case in which different variables
have different domains.

Definition 1.2 (satisfiability, validity and contradiction). A formula
1s satisfiable if there exists an assignment of its variables under which the
formula evaluates to TRUE. A formula is a contradiction if it is not satisfiable.
A formula is valid (also called a tautology) if it evaluates to TRUE under all
assignments.

What does it mean that a formula “evaluates to TRUE” under an assignment?
To evaluate a formula, one needs a definition of the semantics of the various
functions and predicates in the formula. In propositional logic, for example,
the semantics of the propositional connectives is given by truth tables, as
presented above. Indeed, given an assignment of all variables in a propositional

6 1 Introduction and Basic Concepts

formula, a truth table can be used for checking whether it satisfies a given
formula, or, in other words, whether the given formula evaluates to TRUE
under this assignment.

It is not hard to see that a formula ¢ is valid if and only if —p is a
contradiction. Although somewhat trivial, this is a very useful observation,
because it means that we can check whether a formula is valid by checking
instead whether its negation is a contradiction, i.e., not satisfiable.

Example 1.3. The propositional formula

ANB (1.7)

is satisfiable because there exists an assignment, namely {A — TRUE, B —
TRUE}, which makes the formula evaluate to TRUE. The formula

(A = B)AAA-B (1.8)

is a contradiction, as we saw earlier: no assignment satisfies it. On the other
hand, the negation of this formula, i.e.,

-((A = B)ANAA-B), (1.9)
is valid: every assignment satisfies it. J

Given a formula ¢ and an assignment « of its variables, we write o = ¢ to
denote that « satisfies . If a formula ¢ is valid (and hence, all assignments
satisfy it), we write = ¢.

Definition 1.4 (the decision problem for formulas). The decision prob-
lem for a given formula ¢ is to determine whether ¢ is valid.

Given a theory T, we are interested in a procedure? that terminates with
a correct answer to the decision problem, for every formula of the theory 7.°
This can be formalized with a generalization of the notions of “soundness”
and “completeness” that we saw earlier in the context of inference systems.
These terms can be defined for the more general case of procedures as follows:

3 Recall that the discussion here refers to propositional logic. In the more general

case, we are not talking about assignments, rather about structures that may
or may not satisfy a formula. In that case, the notation = ¢ means that all
structures satisfy . These terms are explained later in Sect. 1.4.
We follow the convention by which a procedure does not necessarily terminate,
whereas an algorithm terminates. This may cause confusion, because a “decision
procedure” is by definition terminating, and thus should actually be called a
“decision algorithm”. This confusion is rooted in the literature, and we follow it
here.
Every theory is defined over a set of symbols (e.g., linear arithmetic is defined
over symbols such as “+” and “>”). By saying “every formula of the theory” we
mean every formula that is restricted to the symbols of the theory. This will be
explained in more detail in Sect. 1.4.

IS

ot

1.2 Basic Definitions 7

Definition 1.5 (soundness of a procedure). A procedure for the decision
problem is sound if when it returns “Valid”, the input formula is valid.

Definition 1.6 (completeness of a procedure). A procedure for the deci-
sion problem is complete if

e it always terminates, and
o it returns “Valid” when the input formula is valid.

Definition 1.7 (decision procedure). A procedure is called a decision pro-
cedure for T if it is sound and complete with respect to every formula of T

Definition 1.8 (decidability of a theory). A theory is decidable if and
only if there is a decision procedure for it.

Given these definitions, we are able to classify procedures according to whether
they are sound and complete or only sound. It is rarely the case that unsound
procedures are of interest. Ideally, we would always like to have a decision pro-
cedure, as defined above. However, sometimes either this is not possible (if the
problem is undecidable) or the problem is easier to solve with an incomplete
procedure. Some incomplete procedures are categorized as such because they
do not always terminate (or they terminate with a “don’t know” answer).
However, in many practical cases, they do terminate. Thus, completeness can
also be thought of as a quantitative property rather than a binary one.

All the theories that we consider in this book are decidable. Once a theory
is decidable, the next question is how difficult it is to decide it. A common
measure is that of the worst-case or average-case complexity, parameterized by
certain characteristics of the input formula, for example its size. One should
distinguish between the complexity of a problem and the complexity of an
algorithm. For example, most of the decision problems that we consider in
this book are in the same complexity class, namely they are NP-complete, but
we present different algorithms with different worst-case complexities to solve
them. Moreover, since the worst-case complexities of alternative algorithms
are frequently the same, we take a pragmatic point of view: is a given decision
procedure faster than its alternatives on a significant set of real benchmark
formulas?

Comparing decision procedures with the same worst-case complexity is
problematic: it is rare that one procedure dominates another. The common
practice is to consider a decision procedure relevant if it is able to perform
faster than others on some significant subset of public benchmarks, or on some
well-defined subclass of problems. When there is no way to predict the relative
performance of procedures without actually running them, they can be run in
parallel, with a “first-to-end Kkills all others” policy. This is a common practice
in industry.

8 1 Introduction and Basic Concepts

1.3 Normal Forms and Some of Their Properties

The term normal form, in the context of formulas, is commonly used to
indicate that a formula has certain syntactic properties. In this chapter, we
introduce normal forms that refer to the Boolean structure of the formula. It is
common to begin the process of deciding whether a given formula is satisfiable
by transforming it to some normal form that the decision procedure is designed
to work with. In order to argue that the overall procedure is correct, we need
to show that the transformation preserves satisfiability. The relevant term for
describing this relation is the following.

Definition 1.9 (equisatisfiability). Two formulas are equisatisfiable if they
are both satisfiable or they are both unsatisfiable.

The basic blocks of a first-order formula are its predicates, also called
the atoms of the formula. For example, Boolean variables are the atoms of
propositional logic, whereas equalities of the form z; = z; are the atoms of
the theory of equality that is studied in Chap. 4.

Definition 1.10 (negation normal form (NNF)). A formula is in nega-
tion normal form (NNF) if negation is allowed only over atoms, and A,V,—
are the only allowed Boolean connectives.

For example, —(x; V 23) is not an NNF formula, because the negation is
applied to a subformula which is not an atom.

Every quantifier-free formula with a Boolean structure can be transformed
in linear time to NNF, by rewriting —

(a = b)=(-aVb), (1.10)
and applying repeatedly what are known as De Morgan’s rules,

=(aVb)=(-aAn-b),

—(aAb) = (maV -b). (1.11)

In the case of the formula above, this results in -z A —zs.

Definition 1.11 (literal). A literal is either an atom or its negation. We
say that a literal is negative if it is a negated atom, and positive otherwise.

For example, in the propositional-logic formula
(aV=b)A=c, (1.12)

the set of literals is {a, =b, ¢}, where the last two are negative. In the theory
of equality, where the atoms are equality predicates, a set of literals can be
{561 = T2, —\(.Il = $3)7 _'(1‘2 = 171)}

Literals are syntactic objects. The set of literals of a given formula changes
if we transform it by applying De Morgan’s rules. Formula (1.12), for example,
can be written as —(—a A b) A —¢, which changes its set of literals.

1.3 Normal Forms and Some of Their Properties 9

Definition 1.12 (state of a literal under an assignment). A4 positive
literal is satisfied if its atom is assigned TRUE. Similarly, a negative literal is
satisfied if its atom is assigned FALSE.

Definition 1.13 (pure literal). A literal is called pure in a formula ¢, if
all occurrences of its variable have the same sign.

In many cases, it is necessary to refer to the set of a formula’s literals as if
this formula were in NNF. In such cases, either it is assumed that the input
formula is in NNF (or transformed to NNF as a first step), or the set of literals
in this form is computed indirectly. This can be done by simply counting the
number of negations that nest each atom instance: it is negative if and only
if this number is odd.

For example, —x; is a literal in the NNF of

= (nx1 = z2), (1.13)

because there is an occurrence of x; in ¢ that is nested in three negations
(the fact that x; is on the the left-hand side of an implication is counted as a
negation). It is common in this case to say that the polarity (also called the
phase) of this occurrence is negative.

Theorem 1.14 (monotonicity of NNF). Let ¢ be a formula in NNF and
let « be an assignment of its variables. Let the positive set of o with respect to
@, denoted pos(a, @), be the literals that are satisfied by «. For every assign-
ment o' to p’s variables such that pos(a, p) C pos(a/,), a = = o | .

Figure 1.1 illustrates this theorem: increasing the set of literals satisfied by
an assignment maintains satisfiability. It does mot maintain unsatisfiability,
however: it can turn an unsatisfying assignment into a satisfying one.

o afFp = dEy

Fig. 1.1. Tllustration of Theorem 1.14. The ellipses correspond to the sets of literals
satisfied by a and o/, respectively

The proof of this theorem is left as an exercise (Problem 1.3).

Example 1.15. Let
pi= (mxAy)Vz (1.14)

be an NNF formula. Consider the following assignments and their correspond-
ing positive sets with respect to :

10 1 Introduction and Basic Concepts

a:={r—0, y—1 2—0} pos(a,p) = {—z,y}

!

o = {x—0,y—1, z—1} pos(d,¢) = {-x,y,z}. (1.15)
By Theorem 1.14, since a = ¢ and pos(a, @) C pos(a/,), then o/ = ¢.
Indeed, o/ = . .

We now describe two very useful restrictions of NNF: disjunctive normal
form (DNF) and conjunctive normal form (CNF).

Definition 1.16 (disjunctive normal form (DNF)). A formula is in dis-
junctive normal form if it is a disjunction of conjunctions of literals, i.e., a

formula of the form
\/ (/\lij) ; (1.16)

where l;; is the j-th literal in the i-th term (a term is a conjunction of literals).

Example 1.17. In propositional logic, [is a Boolean literal, i.e., a Boolean
variable or its negation. Thus the following formula over Boolean variables a,
b, ¢, and d is in DNF:

(anch—b) V

(ma A d) v

(b A =cA—d) v (1.17)

In the theory of equality, the atoms are equality predicates. Thus, the following
formula is in DNF:

((x1 = 22) A (22 = 23) A (23 = 21)) V

(~(@1 = 24) A (24 = 22)) v

((x2 = x3) AN (23 = 24) A (24 = 1)) V (1.18)
ol

Every formula with a Boolean structure can be transformed into DNF, while
potentially increasing the size of the formula exponentially. The following
example demonstrates this exponential ratio.

Example 1.18. The following formula is of length linear in n:
(.131 V 1‘2) VANCERIVAN (l‘gn_l vV xzn) . (1.19)

The length of the equivalent DNF, however, is exponential in n, since every
new binary clause (a disjunction of two literals) doubles the number of terms
in the equivalent DNF, resulting, overall, in 2" terms:

1.3 Normal Forms and Some of Their Properties 11

(fEl ANx3 N\ NTop_3 AN CUanl) \Y
(!L‘l /\LL’g/\---/\.’L’gn,S/\{L‘Qn) \Y
(.%‘1 ANx3 /N ANXTop_o N .%‘Qn) V (120)

ol

Although transforming a formula to DNF can be too costly in terms of
computation time, it is a very natural way to decide formulas with an arbitrary
Boolean structure.

Suppose we are given a disjunctive linear arithmetic formula, that is, a
Boolean structure in which the atoms are linear inequalities over the reals.
We know how to decide whether a conjunction of such literals is satisfiable:
there is a known method called simplex that can give us this answer. In order
to use the simplex method to solve the more general case in which there are
also disjunctions in the formula, we can perform syntactic case-splitting.
This means that the formula is transformed into DNF, and then each term
is solved separately. Each such term contains a conjunction of literals, a form
which we know how to solve. The overall formula is satisfiable, of course, if
any one of the terms is satisfiable. Semantic case-splitting, on the other
hand, refers to techniques that split the search space, in the case where the
variables are finite (“first the case in which 2 = 0, then the case in which
r=1..7).

The term case-splitting (without being prefixed with “syntactic”) usually
refers in the literature to either syntactic case-splitting or a “smart” imple-
mentation thereof. Indeed, many of the cases that are generated in syntactic
case-splitting are redundant, i.e., they share a common subset of conjuncts
that contradict each other. Efficient decision procedures should somehow avoid
replicating the process of deducing this inconsistency, or, in other words, they
should be able to learn, as demonstrated in the following example.

Example 1.19. Consider the following formula:
pi= (a=1Va=2)Aa>3A(b>4Vb<0). (1.21)
The DNF of ¢ consists of four terms:

(a=1Na>3Nb>4)
(a=2Na>3Nb>4)
(a=1Aa>3Ab<0)
(a=2Na>3Nb<0).

Vv
v
¥ (1.22)

These four cases can each be discharged separately, by using a decision proce-
dure for linear arithmetic (Chap. 5). However, observe that the first and the
third case share the two conjuncts ¢ = 1 and a > 3, which already makes the
case unsatisfiable. Similarly, the second and the fourth case share the con-
juncts a = 2 and a > 3. Thus, with the right learning mechanism, two of the

12 1 Introduction and Basic Concepts

four calls to the decision procedure can be avoided. This is still case-splitting,
but more efficient than a plain transformation to DNF. a

The problem of reasoning about formulas with a general Boolean structure
is a common thread throughout this book.

Definition 1.20 (conjunctive normal form (CNF)). 4 formula is in con-
junctive normal form if it is a conjunction of disjunctions of literals, i.e., it

has the form
AV i) (1.23)
J

i
where l;; is the j-th literal in the i-th clause (a clause is a disjunction of
literals).

Every formula with a Boolean structure can be transformed into an equiv-
alent CNF formula, while potentially increasing the size of the formula ex-
ponentially. Yet, any propositional formula can also be transformed into an
equisatisfiable CNF formula with only a linear increase in the size of the for-
mula. The price to be paid is n new Boolean variables, where n is the number
of logical gates in the formula. This transformation is done via Tseitin’s
encoding [195].

Tseitin suggested that one new variable should be added for every logical
gate in the original formula, and several clauses to constrain the value of this
variable to be equal to the gate it represents, in terms of the inputs to this
gate. The original formula is satisfiable if and only if the conjunction of these
clauses together with the new variable associated with the topmost operator
is satisfiable. This is best illustrated with an example.

Example 1.21. Given a propositional formula
T, — (ZZJQ /\Ig) s (124)

with Tseitin’s encoding we assign a new variable to each subexpression, or,
in other words, to each logical gate, for example AND (A), OR (V), and
NOT (—). For this example, let us assign the variable ay to the AND gate
(corresponding to the subexpression o A z3) and a; to the IMPLICATION
gate (corresponding to x1 = a2), which is also the topmost operator of this
formula. Figure 1.2 illustrates the derivation tree of our formula, together
with these auxiliary variables in square brackets.
We need to satisfy aq, together with two equivalences,

ap < ((El E=4 ag),

gy <— (372/\.’)3‘3) . (125)

The first equivalence can be rewritten in CNF as

1.3 Normal Forms and Some of Their Properties 13

Fig. 1.2. Tseitin’s encoding. Assigning an auxiliary variable to each logical gate
(shown here in square brackets) enables us to translate each propositional formula
to CNF, while increasing the size of the formula only linearly

(Cl1 \/.131) N
(a1 V _\(IQ) A (126)
("&1 V -1 vV (ZQ) s

and the second equivalence can be rewritten in CNF as

(—|a2 V 1‘2) A\
(maz V a3) A (1.27)
(CLQ vV —I9 \Y —\xg) .

Thus, the overall CNF formula is the conjunction of (1.26), (1.27), and the
unit clause

(a1) , (1.28)

which represents the topmost operator. o

There are various optimizations that can be performed in order to reduce
the size of the resulting formula and the number of additional variables. For
example, consider the following formula:

21V (z2 ANxg Axg Axp) . (1.29)

With Tseitin’s encoding, we need to introduce four auxiliary variables. The
encoding of the clause on the right-hand side, however, can be optimized to
use just a single variable, say as:

ay <= (a2 Ax3 ATgAT5). (1.30)
In CNF,
(—\CLQ V 1‘2) A
("(12 \% l’g) A\
(mag V xy) A (1.31)
(ﬁag V .%‘5) AN

(Clg V xo V x3 VvV xy V _\.1‘5) .

In general, we can encode a conjunction of n literals with a single variable and
n + 1 clauses, which is an improvement over the original encoding, requiring
n — 1 auxiliary variables and 3(n — 1) clauses.

14 1 Introduction and Basic Concepts

Such savings are also possible for a series of disjunctions (see Problem 1.1).
Another popular optimization is that of subsumption: given two clauses
such that the set of literals in one of the clauses subsumes the set of literals
in the other clause, the longer clause can be discarded without affecting the
satisfiability of the formula.

Finally, if the original formula is in NNF, the number of clauses can be
reduced substantially, as was shown by Plaisted and Greenbaum in [152].
Tseitin’s encoding is based on constraints of the form

auxiliary variable <= formula , (1.32)

but only the left-to-right implication is necessary. The proof that this improve-
ment is correct is left as an exercise (Problem 1.4). In practice, experiments
show that owing to the requirement of transforming the formula to NNF first,
this reduction has a relatively small (positive) effect on the run time of modern
SAT solvers compared with Tseitin’s encoding.

Example 1.22. Consider a gate x; A xo, which we encode with a new
auxiliary variable a. Three clauses are necessary to encode the constraint
a < (x1/Ax2), as was demonstrated in (1.27). The constraint a <= (x1Ax2)
(equivalently, (a V —x1 V —x2)) is redundant, however, which means that only
two out of the three constraints are necessary. o

A conversion algorithm with similar results to [152], in which the elimina-
tion of the negations is built in (rather than the formula being converted to
NNF a priori), has been given by Wilson [201].

1.4 The Theoretical Point of View

While we take the algorithmic point of view in this book, it is important to
understand also the theoretical context, especially for readers who are also
interested in following the literature in this field or are more used to the
terminology of formal logic. It is also necessary for understanding Chaps. 10
and 11. We must assume in this subsection that the reader is familiar to some
extent with first-order logic — a reasonable exposition of this subject is beyond
the scope of this book. See [30, 91] for a more organized study of these matters.
Let us recall some of the terms that are directly relevant to our topic.

First-order logic (also called predicate logic) is based on the following
elements:

1. Variables: a set of variables.

2. Logical symbols: the standard Boolean connectives (e.g., “A”, “=7, and
“v7), quantifiers (“3” and “v”) and parentheses.

3. Nonlogical symbols: function, predicate, and constant symbols.

4. Syntax: rules for constructing formulas. Formulas adhering to these rules
are said to be well-formed.

1.4 The Theoretical Point of View 15

Essentially, first-order logic extends propositional logic with quantifiers
and the nonlogical symbols. The syntax of first-order logic extends the syntax
of propositional logic naturally. Two examples of such formulas are

e JyeZ VxeZ. x>y,
e YneN.IpeN.n>1 = (isprime(p) An <p<2n),

where “>7, “<” and “isprime” are nonlogical binary predicate symbols.
The elements listed above only refer to symbols and syntax — they still
do not tell us how to evaluate whether a given formula is true or false. This
separation between symbols and their interpretation — between syntax and
semantics — is an important principle in the study of logic. We shall explain
this separation with an example. Let X denote the set of symbols {0, 1, +, =},
where “0” and “1” are constant symbols, “+” is a binary function symbol,
and “=” is a binary predicate symbol. Consider the following formula over X

p:=dz.x2+0=1. (1.33)

Now, is ¢ true in Ny? (Ny denotes the naturals, including 0.)

What seems like a trivial question is not so simple in the world of formal
logic. A logician would say that the answer depends, among other things,
on the interpretation of the symbols in Y. What does the “+” symbol
mean? Which elements in the domain do “0” and “1” refer to? From a formal
perspective, whether ¢ is true can only be answered with respect to a given
structure. A structure is a tuple consisting of

e a domain;
an interpretation of the nonlogical symbols, in the form of a mapping
between each function and predicate symbol to a function and a predicate,
respectively, and an assignment of a domain element to each of the constant
symbols;

e an assignment of a domain element to each of the free (unquantified) vari-
ables.

For example, if we choose to interpret the “4” symbol as the multiplication
function, the answer is that ¢ in (1.33) is false.

The formula ¢ is satisfiable if and only if there ezists a structure under
which the formula is true. Indeed, in this case there exists such a domain and
interpretation — namely, Ny and the common interpretation of “+47, “=", “0”
and “1” — and, hence, the formula is satisfiable.

First-order logic can be thought of as a framework giving a generic syn-
tax and the building blocks for defining specific restrictions thereof, called
theories. The restrictions defined by a theory are on the nonlogical symbols
that can be used and the interpretation that we can give them. Indeed, in a
practical setting we would not want to consider an arbitrary interpretation of
the symbols as above (where “+” is multiplication); rather we consider only
specific ones.

16 1 Introduction and Basic Concepts

A set of nonlogical symbols is called a signature. Given a signature X, a
Y-formula is a formula that uses only nonlogical symbols from X (possibly
in addition to logical symbols). A variable is free if it is not bound by a
quantifier. A sentence is a formula without free variables. A first-order X-
theory T consists of a set of X-sentences. For a given X-theory T', a X-formula
o is T-satisfiable if there exists a structure that satisfies both the formula
and the sentences of T. Similarly, a X-formula ¢ is T-valid if all structures
that satisfy the sentences of T', also satisfy ¢.

The set of sentences that are required is sometimes large or even infinite.
It is therefore common to define theories via a set of axioms, which implicitly
represent all the sentences that can be inferred from them, using some sound
and complete inference system for the logical symbols.

Example 1.23. Consider a simple signature X' consisting only of the pred-

icate symbol “=".6 Let T be a X-theory. An example of a well-formed X-
formula is

Vi, y,z (=y) Ay =2)) = —(z=2)). (1.34)
If we wish T to restrict the interpretation of “=" to the equality predicate,

the following three axioms are sufficient:

Ve, z =u (REFLEXIVITY) ,
Ve,y. x=y = y==1 (SYMMETRY) , (1.35)
Va,y,z. t =y ANy =2z = x =z (TRANSITIVITY) .

Since every domain and interpretation that satisfy these axioms also sat-
isfy (1.34), then (1.34) is T-valid. a4

As said above, a theory restricts only the nonlogical symbols. If we want
to restrict the set of logical symbols or the grammar, we need to speak about
fragments of the logic. For example, we can speak about the quantifier-
free fragment of 7' as defined in the example above. This fragment, called
equality logic, happens to be the subject of Chap. 4. Most of the chapters, in
fact, are concerned with quantifier-free fragments of theories. Another useful
fragment is called the conjunctive fragment, which means that the only
Boolean connective that is allowed is conjunction. What about restricting the
interpretation of the logical symbols? The axioms that restrict the interpre-
tation of the logical symbols, called the logical axioms, are assumed to be
“built in”, i.e., they are common to all first-order theories.

Numerous theories have been considered over the years, corresponding to
various problems of interest. Many of them lead to decidability, and, frequently
to efficient decision procedures. The theory of Presburger arithmetic, for
example, is defined with a signature X = {0, 1, +, =} and is still decidable. In

5 Tt is frequently the case in the literature that the equality sign is considered as a
logical symbol, and then the theory defined here has an empty signature. We do
not follow this convention here, however.

1.4 The Theoretical Point of View 17

contrast, the theory of Peano arithmetic, which is defined over a signature
Y = {0,1,+,,=}, is undecidable. Thus, the addition of the multiplication
symbol and the corresponding axioms that define it make the decision problem
undecidable. Other famous theories include the theory of equality, the theory
of reals, the theory of integers, the theory of arrays, the theory of recursive
data structures and the theory of sets (“set theory”). Many of the decidable
ones that are in practical use are covered in this book.

1.4.1 The Problem We Solve

Unless otherwise stated, we are concerned with

the satisfiability problem of the quantifier-free fragment of various
first-order theories.

Formulas in such fragments are called ground formulas, as they only contain
free (unquantified, also called ground) variables and constants. Exceptions are
Chap. 9, which is concerned with quantified formulas, and a small part of
Chap. 7, which is concerned with quantified array logic.

There is a subtle difference between the satisfiability problem of ground
formulas and the satisfiability problem of existentially quantified formulas.
It is, of course, trivial that a ground formula ¢ over variables xq,...,x, is
satisfiable if and only if

Ay, T @ (1.36)

is satisfiable. Thus, the decision procedures for both problems can be similar.
The reason we use the former definition is that this entails, from a formal per-
spective, that the satisfying structure includes an assignment of the variables,
because they are all free. In many practical applications, such an assignment
is necessary. In fact, the former problem can be seen as an instance of the
constraint satisfaction problem (CSP), which is all about finding an
assignment that satisfies a set of unquantified constraints.”

We assume that the input formulas are given in negation normal form,
or that they are implicitly transformed to this form as a first step of any of
the algorithms described later. As explained in Sect. 1.10, every formula can
be transformed to this form in linear time. The reason that this assumption
is important is that it simplifies the algorithms and the arguments for their
correctness.

1.4.2 Our Presentation of Theories

Our presentation of theories in the chapters to come is not as defined above.
In an attempt to make the presentation more accessible and the chapters more
self-contained, we make the following changes:

" The emphasis and terminology are somewhat different. Most of the research in
the CSP community is concerned with finite, discrete domains, in contrast to the
problems considered in this book.

18 1 Introduction and Basic Concepts

1. Rather than specifying theories through their set of symbols and sentences,
we give the domain explicitly, and fix the interpretations of symbols in
accordance with their common use. Hence, “+” is always the addition
function, “0” is the 0 element in the given domain, and so forth.

2. Rather than specifying the theory fragment we are concerned with by
referring to the generic grammar of first-order logic as a starting point,
we give an explicit, self-contained definition of the grammar.

From a formal-logic point of view, fixing the interpretation means only
that we have the sentences implicitly; the satisfiability problem remains the
same. From the algorithmic point of view, however, the satisfiability problem
now amounts to searching for a satisfying assignment of variables from the
predefined domain. Whether a given assignment satisfies the formula can be
determined according to the commonly used meanings of the various symbols.

This form of presentation is in line with our focus on the algorithmic point
of view: when designing a decision procedure for a theory, the interpretation
of the symbols has to be predefined. In other words, changing the domain or
interpretation of symbols changes the algorithm.

1.5 Expressiveness vs. Decidability

There is an important trade-off between what a theory can express and how
hard it is to decide, that is, how hard it is to determine whether a given
formula allowed by the theory is valid or not. This is the reason for defining
many different theories: otherwise, we would define and use only a single
theory sufficiently expressive for all perceivable decision problems.

A theory can be seen as a tool for defining languages. Every formula in
the theory defines a language, which is the set of “words” (the assignments,
in the case of quantifier-free formulas) that satisfy it. We now define what it
means that one theory is more expressive than another.

Definition 1.24 (expressiveness). Theory A is more expressive than theory
B if every language that can be defined by a B-formula can also be defined by
an A-formula, and there exists at least one language definable by an A-formula
that cannot be defined by a B-formula. We denote the fact that theory B is
less expressive than theory A by B < A.

For example, propositional logic is more expressive than what is known as “2-
CNEFE” | i.e., CNF in which each clause has at most two literals. In propositional
logic, we can define the formula

X V X9 vV s , (137)

which defines a language that we cannot define with 2-CNF": it accepts all truth
assignments to xq,z2, x3 except {x; — FALSE, xo — FALSE, Z3 — FALSE}.
How can we prove this?

1.6 Boolean Structure in Decision Problems 19

Well, assume that there exists a 2-CNF representation of this formula
using the same set of variables, and consider one of its binary clauses. Such
a clause contradicts two of the eight possible assignments. For example, a
clause (x1 V x2) contradicts {1 +— FALSE, 3 + FALSE, x3 — FALSE} and
{x1 — FALSE, x5 +— FALSE, x3 — TRUE}. Any additional clause can only
contradict more assignments. Hence, we can never create a 2-CNF formula
such that exactly one of the eight assignments does not satisfy it.

On the other hand, 2-CNF is a restriction of propositional logic; hence,
obviously, any 2-CNF formula can be expressed in propositional logic. Thus,
we have

2-CNF < propositional logic . (1.38)

This example also demonstrates the influence of expressiveness on compu-
tational hardness: while propositional logic is NP-complete, 2-CNF can be
solved in polynomial time.

In order to illustrate the trade-off between how expressive a theory is and
how hard it is to decide formulas in that theory, consider a theory 1" defined by
some syntax. Let 17, ..., T, denote a list of fragments of T', defined by various
restrictions on the syntax of T (similarly to the way we restricted propositional
logic to 2-CNF above), for which Ty < T5 < ... < T,, < T. Technically, this
means that we have imposed a total order on these fragments in terms of
their expressive power. Under such assumptions, Fig. 1.3 illustrates the trade-
off between expressiveness and computational hardness: the less expressive
the theory is (the more restrictions we put on it), the easier it is to decide
it. Assume our imaginary theory 7' is undecidable. After some threshold is
crossed (from right to left in the figure), the theory fragments can become
decidable. After enough restrictions have been added, the theory becomes
solvable in polynomial time. The decidable but nonpolynomially decidable
fragments pose a computational challenge. This is one of the challenges we
focus on in this book.

This view is simplistic, however, because there is no total order on the
expressive power of theories, only a partial order. This means that there can
be two theories, A and B, neither of which is more expressive than the other,
yet their expressive power is different. In other words, there are languages
that can be defined by A and not by B, and there are languages that can be
defined by B and not by A.

1.6 Boolean Structure in Decision Problems

We conclude this chapter by demonstrating the need for reasoning about
formulas with a Boolean structure.

Many decision procedures assume that the decision problem is given by a
conjunction of constraints. The simplex algorithm and the Omega test, both
of which are described in Chap. 5, are examples of such procedures.

20 1 Introduction and Basic Concepts

|
Computational,

challenge |
B —"

|
I
I
I
I
I
1
I
T
Easier to decide .
1
1
1
I

I
I
I
I
! More expressive
I
. l
Polynomial |
I
I

Decidable Undecidable

Fig. 1.3. The trade-off between expressiveness of theories and the hardness of de-
ciding them, illustrated for an imaginary series of theories T1,...,T,,T for which
each T3, ¢ € {1,...,n}, is less expressive than its successor

Many applications, however, require a more complex Boolean structure.
In program analysis and verification, for example, disjunctions may appear in
the program to be verified, either explicitly (e.g., x = v || z) or implicitly
through constructs such as 1 f and switch statements. Any reasoning system
about such programs, therefore, must be able to deal with disjunctions. For
example, verification conditions that arise in program verification (e.g.,
using Hoare logic), often have the form of an implication.

The following example focuses on a technique for reasoning about pro-
grams, that demonstrates how program structure, including i f statements, is
evident in the underlying verification conditions that need to be checked.

Example 1.25. Bounded model checking (BMC) of programs is a tech-
nique for verifying that a given property (typically given as an assertion by
the user) holds for a program in which the number of loop iterations and re-
cursive calls is bounded by a given number k. The states that the program can
reach within this bound are represented symbolically by a formula, together
with the negation of the property. If the combined formula is satisfiable, then
there exists a path in the program that violates the property.

Consider the program in the left part of Fig. 1.4. The number of paths
through this program is exponential in N, as each of the a[i] elements can
be either zero or nonzero. Despite the exponential number of paths through
the program, its states can be encoded with a formula of size linear in N, as
demonstrated in the right part of the figure.

The formula on the right of Fig. 1.4 encodes the states of the program on
its left, using the static-single-assignment (SSA) form. Briefly, this means
that in each assignment of the form x = exp;, the left-hand side variable
x is replaced with a new variable, say x;, and any reference to x after this
line and before x is assigned again is replaced with x;. Such a replacement is
possible because there are no loops (recall that this is done in the context of
BMC). After this transformation, the statements are conjoined. The resulting
equation represents the states of the original program.

1.7 Problems 21

int a[N]; unsigned c;

c1 =0 A
c2=(al0]=0)?c1+1:¢c1 A
c = 0;
! = = ? :
for(i = 0; 1 < N; 1i++) cs=(al] =0)7c2+1:c2 A
if(al[i] == 0)
c++; envt1 = (a[N=1]=0)?cn+1:cen

Fig. 1.4. A simple program with an exponential number of paths (left), and a
static-single-assignment (SSA) form of this program after unwinding its for loop
(right)

The ternary operator ¢?x : y in the equation on the right of Fig. 1.4 can
be rewritten using a disjunction, as illustrated in (1.39). These disjunctions
lead to an exponential number of clauses once the formula is converted to
DNF.

Cc1 = 0 A
((al0] =0Aca=c1+1)V(a[0] #O0Aca=c1)) A
((al]=0Acg=ca+1)V(a[l] #0Ac3 =c2)) A (1.39)

(a[N=1] = 0 A enir = en + 1)V (@N=1] £ 0 A eyt = ex) -

In order to verify that some assertion holds at a specific location in the pro-
gram, it is sufficient to add a constraint corresponding to the negation of this
assertion, and check whether the resulting formula is satisfiable. For example,
to prove that at the end of the program ¢ < N, we need to conjoin (1.39) with
(CN+1 > N) o

To summarize this section, there is a need to reason about formulas with
disjunctions, as illustrated in the example above. The simple solution of going
through DNF does not scale, and better solutions are needed. Solutions that
perform better in practice (the worst case remains exponential, of course)
indeed exist, and are covered extensively in this book.

1.7 Problems

Problem 1.1 (improving Tseitin’s encoding).

(a) Using Tseitin’s encoding, transform the following formula ¢ to CNF. How
many clauses are needed?

pi= (x1 A(z2 V... Vx,)) . (1.40)

22 1 Introduction and Basic Concepts

(b) Consider a clause (x1V...VZ,), n > 2, in a non-CNF formula. How many
auxiliary variables are necessary for encoding it with Tseitin’s encoding?
Suggest an alternative way to encode it, using a single auxiliary variable.
How many clauses are needed?

Problem 1.2 (expressiveness and complexity).

(a) Let T7 and Ts be two theories whose satisfiability problem is decidable and
in the same complexity class. Is the satisfiability problem of a Tj-formula
reducible to a satisfiability problem of a Ts-formula?

(b) Let Ty and T5 be two theories whose satisfiability problems are reducible
to one another. Are 77 and 75 in the same complexity class?

Problem 1.3 (monotonicity of NNF with respect to satisfiability).
Prove Theorem 1.14.

Problem 1.4 (one-sided Tseitin encoding). Let ¢ be an NNF formula (see
Definition 1.10). Let % be a formula derived from ¢ as in Tseitin’s encoding
(see Sect. 1.3), but where the CNF constraints are derived from implications
from left to right rather than equivalences. For example, given a formula

a; N\ (CLQ vV —|a3) s
the new encoding is the CNF equivalent of the following formula,

To A
(xg = aj; N\ (El) A
(1 = aaVx2) A
(372 — ﬁag) s

where xg, x1, 2 are new auxiliary variables. Note that Tseitin’s encoding to
CNF starts with the same formula, except that the “=" symbol is replaced
with “<=".

1. Prove that @ is satisfiable if and only if ¢ is.

2. Let I, m,n be the number of AND, OR, and NOT gates, respectively, in ¢.
Derive a formula parameterized by [, m and n that expresses the ratio of
the number of CNF clauses in Tseitin’s encoding to that in the one-sided
encoding suggested here.

1.8 Glossary

23

1.8 Glossary

The following symbols were used in this chapter:

First used
Symbol |Refers to ... on page ...
a = |An assignment « satisfies a formula ¢ 6
= |A formula ¢ is valid (in the case of quantifier-free 6
formulas, this means that it is satisfied by all assign-
ments from the domain)
T A theory 6
pos(a, @) |Set of literals of ¢ satisfied by an assignment « 9
B < A |Theory B is less expressive than theory A 18

2

Decision Procedures for Propositional Logic

2.1 Propositional Logic

We assume that the reader is familiar with propositional logic. The syntax of
formulas in propositional logic is defined by the following grammar:

formula : formula A formula | —formula | (formula) | atom
atom : Boolean-identifier | TRUE | FALSE

Other Boolean operators such as OR (V) can be constructed using AND (A)
and NOT (—).

2.1.1 Motivation

Propositional logic is widely used in diverse areas such as database queries,
planning problems in artificial intelligence, automated reasoning and circuit
design. Here we consider two examples: a layout problem and a program ver-
ification problem.

Example 2.1. Let S = {s1,...,s,} be a set of radio stations, each of which
has to be allocated one of k transmission frequencies, for some k < n. Two
stations that are too close to each other cannot have the same frequency. The
set of pairs having this constraint is denoted by E. To model this problem,
define a set of propositional variables {z;; | ¢ € {1,...,n},j € {1,...,k}}.
Intuitively, variable x;; is set to TRUE if and only if station 7 is assigned the
frequency j. The constraints are:

e Every station is assigned at least one frequency:

n k
/\ \/ Tij - (2.1)

i=1j=1

26 2 Decision Procedures for Propositional Logic

e Every station is assigned not more than one frequency:

n k—1
/\ /\(a:ij — /\ _‘xit)- (22)

j<t<k

e Close stations are not assigned the same frequency. For each (i,j) € E,

k
/\(xit — —mcjt). (23)

Note that the input of this problem can be represented by a graph, where
the stations are the graph’s nodes and E corresponds to the graph’s edges.
Checking whether the allocation problem is solvable corresponds to solving
what is known in graph theory as the k-colorability problem: can all nodes be
assigned one of k colors such that two adjacent nodes are assigned different
colors? Indeed, one way to solve k-colorability is by reducing it to propositional
logic. a

Example 2.2. Consider the two code fragments in Fig. 2.1. The fragment
on the right-hand side might have been generated from the fragment on the
left-hand side by an optimizing compiler.

if(la && !'b) hi(); if(a) £();
else else
if(la) g(); if(b) g();
else f(); else h();

Fig. 2.1. Two code fragments — are they equivalent?